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Abstract—The next-item recommendation has been in the
central of interest in real-world applications such as e-commerce.
However, it is challenging to infer what a user may purchase next
due the complex interactions in the historical sessions and the
changing semantics of an item over time. Most existing methods
employ separate models to generate the general preference
and the sequential patterns for the next-item recommendation
without considering the interactions between the two factors
or use a simple linear combination of the two factors. In
this paper, we propose a deep adaptable co-embedding neural
network (ACENet) to address these limitations. ACENet not only
adaptably balances the combination of general preference and
sequential patterns but also introduces dynamic attention for each
factor in hybrid representations. Extensive experiments on two
real-world datasets show the superiority of ACENet compared
with other state-of-the-art methods.

Index Terms—Sequential Behavior, Evolving Preferences, Co-
Embedding, Dynamic Integration

I. INTRODUCTION

NEXT-ITEM recommendation systems [1] have become
an important part of many real-world applications and

the core business of leading companies, such as e-commerce
in Alibaba, online news in ByteDance, and social media
in Facebook. They aim to accurately predict a user’s next
actions based on the historical sequential interactions and
connect users with interesting items. For example, an e-
commerce next-item recommendation system is to recommend
the potentially most favorable products to the user in the next
session based on a series of historical sessions, where each
session contains a set of products purchased over some time.
Generally, a user’s activities in the next session are influenced
by both the general preference (long-term preference, e.g., the
user prefers Apple’s products to Microsoft’s products) and
sequential patterns (short-term preference, e.g., the products
purchased recently). Meanwhile, there are mutual interactions
between the two factors as well as among the different
attributes of a factor. For example, after the user who generally
prefers Apple’s products to Microsoft’s products purchased a
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MacBook Pro, he/she may prefer Lumias to iPhones due to the
total cost, and the importance of the price attribute increases
compared to brand.

To recommend the next item, many methods have been
proposed. One way is based on the general preference, which
assumes that the profiles of a user’s preference and items are
relatively stable. Another way is to learn static representations
of users from their sequential interactions [2]–[4]. Some other
works [5], [6] extend to generate user representations using
individual linear combinations of these two factors. However,
few methods except [7], [8] attempt to dynamically combine
the user’s long-term and short-term preferences, which is
important in real-world applications [7]. LSAMN [7] attempts
to introduce an attention mechanism to adapt the general
preference and sequential patterns, and HyperRec [8] adopts
the hypergraph to infer the dynamic user preferences.

In this paper, we propose a novel adaptable co-embedding
neural network (ACENet) to achieve the desirable dynamic
combination. Different from LSAMN and HyperRec, ACENet
not only adaptably balances the combination of general pref-
erence and sequential patterns but also introduces dynamic at-
tention for each factor in hybrid representations. Furthermore,
the item attention mechanism in LSAMN requires fixed-length
items, which may inevitably result in information loss for ses-
sions of different lengths and is not very suitable for sessions
with very few items. By contrast, ACENet implements pooling
operations and employs a co-embedding module. It captures
the user’s dynamic and evolving interests through the high-
level affinity of short-term patterns and long-term patterns
at each time step. In summary, we make the following key
contributions:
• We introduce a novel co-embedding mechanism and an

affinity operation to model a user’s dynamic and evolving
interests for the next-item recommendation.

• Through an adaptable co-embedding deep network,
ACENet strategically combines a user’s general pref-
erence and sequential patterns to generate a high-level
hybrid representation of a user’s preference.

• Compared with state-of-the-art approaches, ACENet
demonstrates consistent superiority based on commonly
used evaluation metrics.

II. RELATED WORK

Our work focuses on generating dynamic and evolving user
preferences from sequential user interactions. Most previous
methods such as Collaborative Filtering (CF) [9]–[11] take
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Fig. 1: The ACENet model

advantage of implicit feedbacks [12]–[14] including check-
in history, search patterns, browsing history, etc. CF based
methods usually assume that a user’s preference is static.
However, in real-world scenarios, there may be duplicate items
in a session, and the popularity of items may frequently drift
over time [15]–[17]. Similarly, a user’s preference for items
can be evolving and constantly changing [18]–[20].

Most previous sequential recommendation systems focus on
sequential pattern mining to predict the next item. For ex-
ample, Markov Chain based methods make recommendations
based on the L-previous actions [6], [21]–[24]. Recurrent Neu-
ral Network (RNN) [4], [25]–[30] based methods learn user
the representations of long-term user interests from sequential
sessions. However, items in a session may not strictly follow
a sequential order and a session may contain duplicate items
in various application scenarios [31]–[33]. Consequently, we
propose to use a co-embedding attention network to make
more effective recommendations.

III. METHODOLOGY

A. Problem Formulation

In this paper, we focus on the sequential next-item rec-
ommendation based on implicit feedbacks (e.g., check-in,
purchases, clicks). Let U = {u1, u2, · · · , um} and I =
{i1, i2, · · · , in} represent the user set and the item set, respec-
tively. Without loss of generality, let ij = j, j ∈ {1, 2, · · · , n}.
The user u’s historical record consists of a sequence of
sessions denoted by Su

t = {su0 , su1 , · · · , sut }. Each session
contains a subset of items, namely ∀k, suk ⊂ I . We can simply
regard items as the purchased good IDs for convenience. Note
that different sessions may have different numbers of items.
The next-item recommendation is to recommend the top-K
items for user u in the next session:

TopK({yut+1,c = Preference(;Su
t , I, u)|c ∈ I}).

B. The Proposed ACENet

ACENet models the hybrid representation of a user’s pref-
erence using the current context, including general preference

and all historical sequential patterns at the current time step.
Figure 1 illustrates the framework of ACENet.

1) The Embedding Layer: In a recommender system,
users and items are usually represented by sparse one-hot
vectors. Given a user u and his/her historical record Su

t ,
embedding layers Φu(·) and Φi(·) map users and items into
two continuous spaces, respectively:

vu = Φu(u) ∈ Rl, u ∈ U, (1)
xc = Φi(c) ∈ Rd, c ∈ I. (2)

Then, Φi(s
u
k) = [xc for c ∈ suk ]T is a matrix of size |suk |×d,

and Φi(S
u
t ) is a session matrix.

2) The Sequence Pattern Embedding Layer: Since the
number of items may be different across sessions, the historical
record mentioned before is not suitable for certain sequential
methods, for example, RNN-based models. Therefore, we
introduce a pooling operation to embed the session matrix
Φi(s

u
t ) into a d-dimension vector:

but = P([xsut (1),xsut (2), · · · ,xsut (|sut |)]) (3)

where sut (i) is the i-th element in session sut , and P(·) is one
of the pooling operations (e.g., max pooling, average pooling).
Such an embedding contributes to the extraction of joint high
level representations for sessions with different lengths.

To capture sequential patterns and to learn dynamic user
interest representations, the sequence pattern embedding layer
leverages a long short-term memory network (LSTM) [34] to
update sequence patterns at each time step. The hidden state
hu
t at time step t is calculated based on the input session’s

latent factor but and the last hidden state hu
t−1:

hu
t = LSTM(hu

t−1, b
u
t ) (4)

where hu
t ∈ Rg denotes the hidden state of the user u at time

step t, and hu
t−1 ∈ Rg denotes the previous state.

3) The Adaptable Co-Embedding Layer: Users’ prefer-
ences and behaviors are likely to change dynamically. To
capture a user’s dynamic changes, we introduce an adaptable
co-embedding layer to learn the collective impact between
the user’s general preference and sequential patterns. Unlike
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existing methods, the co-embedding layer dynamically updates
the user’s general preference and sequential patterns with
a covariance affinity matrix and obtains a hybrid high-level
representation of the user’s preference.

The core of the adaptable co-embedding layer is the covari-
ance affinity matrix C, which is used as a feature connection
between the user’s general preference and the sequential
patterns. The matrix C consists of two parts, the learnable
parameter matrix W ∈ Rg×l and the covariance matrix at the
current time step t:

C = hu
t v

T
u

⊙
W (5)

where C is a matrix of size g × l.
To update the user’s general perference and the sequential

patterns, we define the new general perference representation
and the new sequential patterns as follows:

hu
g = tanh(Wgvu +C(Wsh

u
t )) (6)

hu
s = tanh(Wsh

u
t +CT (Wgvu)), (7)

where Wg ∈ Rg×l and Ws ∈ Rl×g are weight parameters,
while hu

g ∈ Rg and hu
s ∈ Rl represent user u’s new

high-level general preference and high-level squential pattern,
respectively.

4) The Recommendation Layer: We concatenate the out-
puts of the co-embedding layer and feed them into a fully-
connected neural network to predict the preferences of each
item in the next session:

hu
p = tanh(Wp

[
hu
g

hu
s

]
+ βp) (8)

yu
t+1 = W T

f h
u
p + βf (9)

where Wp ∈ Rd0×(g+l) is a weight matrix that projects the
concatenation layer to a d0-dimention hidden layer and reduces
the redundancy; βp ∈ Rd0 is a bias vector; Wf ∈ Rd0×|I| is
the prediction matrix, and βf ∈ R|I| is the bias for the final
prediction of preferences.

C. Training Loss

The network is trained under the same framework as the
Factorized Personalized Markov Chain (FPMC) model [22],
which uses the Bayesian Personalized Ranking (BPR) ap-
proach [35] to optimize the personalized ranking. The ACEN
model is estimated using the maximum a posterior (MAP)
estimation:

arg max
Θ

= ln
∏

u∈U

∏

sut ∈Su
t

∏

i∈sut

∏

j∈I\sut

p(yu
t,i > y

u
t,j |Θ)p(Θ)

=
∑

u∈U

∑

sut ∈Su
t

∑

i∈sut

∑

j∈I\sut

ln p(yu
t,i > y

u
t,j |Θ) + ln p(Θ)

(10)

where p(·) is the preference function, and Θ denotes all
learnable parameters in the model. Given user u’s sequential
feedback history Su

t−1, the probability of preference is defined
as:

p(yu
t,i > y

u
t,j |Θ) =

1

1 + e−(yu
t,i−yu

t,j)
(11)

However, Eq.(10) is difficult for training in practice, as the
user and session data are often large and sparse. To tackle this
issue, we uniformly sample a user’s pair-wise item (i, j) from
the dataset, and follow the negative-item selection method used
in FPMC. The final loss function is:

arg min
Θ

∑

D

− ln p(yu
t,i > y

u
t,j |Θ) + λ||Θ||

(u, Su
t−1, i ∈ sut , j ∈ sut , i 6= j)

(12)

where set D consists of a large amount of elements gener-
ated from the training set, and λ is a regularization coefficient.
The model is subject to end-to-end training with the SGD
optimizer [36] with the loss function in Eq.(12).

IV. EXPERIMENTS

A. Datasets and Preprocessing
We conducted experiments on two real-world datasets,

Foursquare [37], [38] and Gowalla [39]. These two datasets
contain user’s check-in sessions, and each session contains
the items that a user checked in within a day. Following the
previous study [40], [41], we preprocessed the datasets by
removing long-tail users and items: removed all items bought
by less than 20 users and users who bought less than 20 items;
removed users with less than two sessions. The basic statistics
of datasets are summarized in Table I.

TABLE I: Statistics of the Datasets

Dataset #user #item #sequence #avg.session #train #test
|U | |I| length session session

Gowalla 17.9k 14.1k 164.5k 5.32 134.7k 29.8k
Foursquare 2.1k 1.3k 62.2k 2.05 54.3k 7.8k

B. Experimental Settings
1) Baseline Methods: We compared our method,

ACENet1, with the following baselines.
• POP recommends the most popular items in the training

set to users.
• BPR-MF[2009] [35] is a matrix factorization method

only focusing on users’ long-term preferences.
• FMC[2010] [22] is a Markov chain method based on the

last session items.
• FPMC[2010] [22] mines a user’s long-term preferences

and sequential behaviors for next-item recommendation
based on first-order Markov chains.

• HRM[2015] [40] aggregates users’ general preference
and their last sessions using aggregation operations such
as max-pooling and avg-pooling.

• DREAM[2016] [3] is an RNN-based approach taking
advantage of the sequential feature of a user.

• Caser2[2018] [5] incorporates the convolutional neural
network to capture sequential patterns and linearly com-
bine general preference for the user’s hybrid represent.

• SHAN3[2018] [41] employs attention networks to obtain
the representation and uses matrix factorization to com-
pute each item’s score.

• LSAMN[2019] [7] jointly models a user’s long-term and
short-term preferences in two embedding spaces, which
use two-level attention to combine user’s preferences.

1https://github.com/jackenmm/ACENet
2https://github.com/graytowne/caser pytorch
3https://github.com/uctoronto/SHAN
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TABLE II: Performance Comparison on the Two Real-World Datasets

Models Foursquare Gowalla
Rec@5 Rec@10 Rec@20 Prec@5 Prec@10 Prec@20 MRR Rec@5 Rec@10 Rec@20 Prec@5 Prec@10 Prec@20 MRR

POP 0.0007 0.0045 0.0078 0.0006 0.0017 0.0018 0.0046 0.00004 0.0001 0.0003 0.00006 0.00005 0.00007 0.0006
BPR-MF 0.1491 0.2067 0.2461 0.1150 0.0817 0.0934 0.1001 0.0304 0.0555 0.0854 0.0216 0.0189 0.0145 0.0245

FMC 0.1531 0.1937 0.2315 0.1252 0.0823 0.0505 0.0981 0.0319 0.0515 0.0804 0.0218 0.0175 0.0133 0.0229
FPMC 0.1551 0.2022 0.2397 0.1249 0.0815 0.0528 0.1063 0.0287 0.0528 0.0800 0.0197 0.0175 0.0132 0.0224
HRM 0.1536 0.2017 0.2385 0.1257 0.0813 0.0517 0.1038 0.0320 0.0559 0.0916 0.0220 0.0199 0.0157 0.0251

DREAM 0.1409 0.1964 0.2369 0.1148 0.0804 0.0493 0.0958 0.0309 0.0537 0.0809 0.0213 0.0176 0.0133 0.0229
Caser 0.1473 0.2108 0.2163 0.1032 0.0786 0.0479 0.1045 0.0297 0.0513 0.0791 0.0207 0.0182 0.0128 0.0213
SHAN 0.1531 0.2057 0.2506 0.1252 0.0818 0.0497 0.0903 0.0344 0.0607 0.0892 0.0221 0.0189 0.0155 0.0247

LSAMN 0.1457 0.2081 0.2521 0.1272 0.0818 0.0502 0.1047 0.0321 0.0596 0.0876 0.0227 0.0183 0.0147 0.0233
ACENet 0.1631 0.2189 0.2675 0.1287 0.0827 0.0534 0.1181 0.0357 0.0646 0.0970 0.0237 0.0194 0.0163 0.0287

TABLE III: The Impact of ACENet Components

Model Pooling Co-embeding Foursquare Gowalla
Recall@10 Recall@20 MRR Recall@10 Recall@20 MRR

ACENet

avg × 0.2007 0.2486 0.0980 0.0628 0.0880 0.0236
avg

√
0.2146 0.2646 0.1123 0.0632 0.0917 0.0266

max × 0.2046 0.2493 0.0997 0.0608 0.0895 0.0247
max

√
0.2189 0.2675 0.1181 0.0646 0.0970 0.0287

2) Evaluation Metrics: We employed three commonly
used metrics [42]–[45] (Rec@K, Prec@K and MRR).
• Rec@K: This metric evaluates the recall of the top-K

ranked items over the test sessions.
• Prec@K: This metric evaluates the precision of the top-K

ranked items over the test sessions.
• MRR: This metric evaluates the mean reciprocal rank of

the predictive position of the ground-truth items over the
test sessions.

3) Implementation Details: In our experiments, we ran-
domly selected 30% of sessions in the last month for
testing and used all others as the training set. Following
the convention of previous studies [1], [46]–[48], we se-
lected the top K items in the test session for each user u,
where K = {5, 10, 20}, and compared these recommended
items with the ground truth to evaluate the recommenda-
tion performance. The embedding size was varied within
the range of {5, 10, 20, 40, 60, 80, 100, 120} with g = l.
Other parameters were set as: the regularization parame-
ter λ ∈ {0.0001, 0.001, 0.01, 0.1}; the learning rate η ∈
{0.0002, 0.002, 0.02, 0.2}; to accelerate training, each batch
consisted of 5 negative samples for each positive label [46].
The hyper-parameters of baseline models are selected via the
same search strategy and the same space, and all models run
15 times and are present with the average value.

C. Results and Analysis.

According to Table II. Under all evaluation metrics
(Rec@K, Prec@K, and MRR), ACENet significantly outper-
formed all baseline algorithms on both real-world datasets,
demonstrating its effectiveness in next-item recommendation.
Compared to LSAMN, ACENet also achieved noticeable im-
provement, confirming the value of adaptabe co-embedding in
balancing both the between-factor and within-factor relation-
ships of the general preference and sequential patterns.

D. Ablation Study.

We also conducted experiments to evaluate the influence
of co-embedding and the pooling operation. In Table III,
”avg” means using the average pooling operation, and ”max”

means using the max pooling operation. In Table III, max
pooling is slightly better than average pooling. We believe
that this is due to the fact that some important items may be
accidentally dropped when the entire item set was divided into
sessions. By contrast, max pooling maintains important items
and ignores some unimportant items. Note that, under the same
pooling operation, the adaptable co-embedding layer always
helped ACENet obtain better results, showing the efficacy of
adaptable co-embedding layer.

E. Influence of Hyper-Parameter

We investigated the influence of embedding dimensions
on our ACENet model. Figure 2 shows the performance of
ACENet under Recall@20 and MRR for various dimensions
without changing the values of other hyper-parameters. For
all datasets, higher embedding dimensions did not necessarily
result in better performance, and a reasonable dimension range
was between 20 and 60.

Fig. 2: The impact of embedding dimensions.

V. CONCLUSION

To effectively recommend the next item within a series
of sessions, this paper proposed a novel Adaptable Co-
Embedding Deep Neural Network (ACENet). ACENet is a
hybrid co-embedding neural network, which can generate
users’ general tastes and sequential dynamics for next-item
recommendation in the current context. Moreover, it shows
that ACENet can effectively capture the user’s high-level
hybrid preferences and focus on the most relevant items over
all observed sessions in the current time. Experiments show
that ACENet can outperform several state-of-the-art models
according to three popular metrics (Rec@K, Prec@K, MRR)
on two real-world datasets.
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