
Playing in Continuous Spaces: Some Analysis and Extension of 
Population-Based Incremental Learning 

 
Bo Yuan       Marcus Gallagher 

School of Information Technology and Electrical Engineering 
The University of Queensland 

QLD 4072, Australia 
{boyuan, marcusg}@itee.uq.edu.au 

 
 
Abstract - As an alternative to traditional Evolutionary 
Algorithms (EAs), Population-Based Incremental 
Learning (PBIL) maintains a probabilistic model of the 
best individual(s). Originally, PBIL was applied in 
binary search spaces. Recently, some work has been 
done to extend it to continuous spaces. In this paper, 
we review two such extensions of PBIL. An improved  
version of the PBIL based on Gaussian model is 
proposed that combines two main features: a new 
updating rule that takes into account all the individuals 
and their fitness values and a self-adaptive learning 
rate parameter. Furthermore, a new continuous PBIL 
employing a histogram probabilistic model is proposed. 
Some experiment results are presented that highlight 
the features of the new algorithms.  
 
 
1 Introduction 
 
Evolutionary Algorithms (EAs) refer to a broad class of 
optimization algorithms, which take some inspiration from 
evolutionary systems in the natural world. Usually, each 
algorithm begins with a population of randomly generated 
individuals. Then, the fitness of each individual is 
calculated based on some performance measure, called the 
fitness function. Next, a new population of individuals will 
be generated through some direct manipulation of the 
current population. Different algorithms employ different 
operators to do this job. In Genetic Algorithms (GAs), 
crossover is often regarded as the dominant operator while 
mutation is used simply for keeping the genetic diversity 
of the population. As a contrast, Evolution Strategies and 
Evolutionary Programming only use mutation in general 
(see [1] for an outline and references).  

EAs enjoy several advantages compared to other 
optimization algorithms. For example, they only require a 
minimal amount of problem-specific knowledge and do 
not have any special requirements of the fitness function 
such as smoothness and differentiability. Furthermore, 
since EAs often maintain a population of individuals, 
investigating many areas in parallel, they are less likely to 
get stuck in local optima and can be implemented 
efficiently through parallel computation. 

In recent years, a new class of EAs has emerged based 
on probabilistic modelling of the search space[2, 3]. 
Although these methods are often different from each 
other in terms of the type of model in use, they are distinct 
from traditional EAs in that each algorithm employs a 

probabilistic model of the search space that is the only 
persistent part of the searching process. Initially, this 
model is often randomly generated or set to represent 
general distribution. In each generation, a population of 
individuals is generated by sampling from this model. 
After the fitness of each individual is calculated, some 
(typically the best) individuals are chosen to update the old 
model. In these algorithms, new individuals are not 
generated by directly manipulating old ones (e.g., via 
crossover or mutation). So, the most fundamental 
difference between these algorithm classes is that 
traditional EAs work on low-level representations (e.g., 
genes) of the search space, trying to create better 
individuals by directly changing the gene values, while 
model-based EAs employ probabilistic models as the high-
level abstraction of the search space and use them to drive 
the searching process. Such probabilistic models are built 
on the statistical information contained in selected 
individuals, which is a kind of estimation of the structure 
of good individuals. 

Population-Based Incremental Learning (PBIL) is one 
of the earliest model-based EAs, which “removes the 
genetics from the genetic algorithm”[4, 5]. Originally, 
PBIL was designed for binary search spaces. It employs a 
Bernoulli random variable as the model for each bit, which 
is collected into a real-valued vector. During evolution, 
each element of the vector is updated towards the best 
individual(s). Recently, PBIL has been extended to 
continuous spaces by using an interval approach [6] and a 
Gaussian distribution model[7].  

However, there are still some issues related to PBIL. 
For example, when updating the probability vector, the 
fitness value of each selected individual is not taken into 
account. Instead, all of them are given the same strength, 
which is questionable. Secondly, the learning rate 
parameter plays an important role in PBIL. There is 
always a trade-off between reliability and convergence 
speed. Finally, the continuous implementations of PBIL 
seem to have some inherent disadvantages, which 
sometimes may result in serious performance loss. 

The next section briefly reviews PBIL and its 
extensions for continuous search spaces. A new learning 
rule incorporating fitness values and a strategy for self-
adapting the learning rate are also described. A new 
continuous PBIL based on histograms is proposed in 
Section 3. Related experiment results are presented in 
Section 4. The paper is finished in Section 5 with 
conclusions and potential work direction in the future. 



2 Population-Based Incremental Learning 
 

2.1 Binary PBIL (PBILB) 
 

PBIL is one of the simplest model-based EAs, which 
assumes no dependence among variables. The 
probabilistic model in use is a real-valued vector with each 
element independently representing the probability of 
generating a 1 in each corresponding bit.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The Basic Framework of  PBILB  
 

The basic framework of PBILB is in Table 1. PBILB 
starts from a probability vector with all elements set to 0.5, 
which means that each bit in the individual will be set to 0 
or 1 with equal probability. During evolution, the value of 
each element will be updated by the best individual in the 
population and move away from 0.5, modifying its 
estimation about the structure of good individuals. Finally, 
the algorithm will converge to a vector with each element 
close to 0 or 1. In practice, two decisions have to be made: 
the value of the learning rate parameter (α) and the number 
of individuals used to update the vector. 

 For the learning rate in PBILB , a small value is usually  
recommended[8]. It controls the trade-off between 
reliability and convergence speed. In traditional EAs, old 
individuals are replaced by new ones instantly while 
PBILB uses an incremental learning strategy to modify its 
model cautiously, maintaining a long-term memory. The 
reason is that the vector in PBILB does not represent a 
single individual in the search space. Instead, it represents 
the whole search space with certain bias towards some 
areas. If the learning rate is too large, this vector will 
quickly move towards 0 or 1 in each element, reducing the 
exploration ability of PBILB dramatically.  

The number of individuals used to update the vector is 
another parameter of the algorithm. In the above 
framework, only the best individual is utilized while all 
others are discarded. Certainly, more individuals can be 
selected. Another variation is to let PBILB move towards 
the best individual(s) and move away from the worst 
individual at the same time[5].  

 PBILB has been successful in practice on several test 
functions[9]. However, there are still some open questions. 
Firstly, we have discussed the necessity of a small learning 
rate but this may result in a low convergence speed. A 
possible solution is to use a self-adaptive method to 
modify its value dynamically. Secondly, when using 

multiple individuals to update the vector, it may be useful 
to take account of their fitness values explicitly. This 
allows different individuals to have different strengths in 
modifying the probability vector.  

In PBILB each element in the vector is evolved and 
sampled independently. However there are often many 
complex relationships among variables in real-world 
problems. This means that what value a variable should 
take in order for the whole individual to have good fitness 
cannot be decided solely. In fact, it is pretty common that 
good individuals are quite different from each other, which 
means that different values of a variable may all produce 
some good individuals provided that the values of other 
variables are set accordingly. Under this situation, PBILB 
may oscillate for a while and then converge to one 
optimum due to some random factors.  

This problem is due to the simplified model that PBILB 
uses. In order to overcome this disadvantage, some work 
has been done towards using more complicated models 
such as dependency chains, dependency trees or Bayesian 
networks to explicitly capture the interaction among 
variables in the hope of allowing the algorithm to 
concentrate its sampling[2, 3]. In a word, we expect these 
models to tell the algorithm what value a variable should 
take given the values of other variables. However, there 
are some new issues with these models[10]. Firstly, 
building a model itself can be a time-consuming task. The 
cost of building a model typically needs to be traded-off 
with the potential benefit we can expect to get from it. 
Secondly, there is no formal justification about which 
model should be used. A complex model can capture more 
information about the relationship among variables but it 
may also reduce the exploration ability of the algorithm 
using this model. Finally, these model-based EAs have not 
been extensively tested on large-scale problems. For 
example, in a high-dimensional space, the number of 
individuals needed to build a reasonable model can be 
extremely large. As a result, a model built on the 
information provided by a limited number of points in the 
search space can be incomplete and misleading. 
 
2.2 PBIL Based On Interval (PBILI) 
 
One of the earliest attempts to extend PBIL to continuous 
spaces is based on the idea of an interval[6]. For each 
variable Xi, three parameters are specified: the lower 
boundary Li, the upper boundary Ui and a probability value 
Pi representing the probability of Xi being greater than the 
middle of the interval (Li + Ui)/2. Initially, each pair of 
boundaries is set to be equal to the pair of boundaries of 
the search space in each dimension. P is set to 0.5 in all 
dimensions so that each variable generated can be greater 
or less than the middle of the interval with equal 
probability. This setting gives PBILI the freedom to 
initially search the whole space uniformly. In each 
generation, each Pi is updated towards 1 if Xi on the best 
individual is in the upper interval and vice versa. If the 
value of a Pi is sufficiently close to 1 or 0, which means 
that the algorithm is confident that the value of Xi should 
be greater or less than the middle of the current interval, 

Step 1:  Initialize probability vector P to 0.5, t=0 
Step 2:  Sample a population of individuals X from P 
Step 3:  Evaluate individuals 
Step 4:  Update P by the best individual 
              P (t+1) = (1-α) ·P (t) +α · XBest 

Step 5:  t=t +1; 
Step 6:  Go to Step 2 until stopping criteria are met 
 
Parameters: 
Population Size, Learning Rate (α)  



one of the two boundaries will be moved accordingly to 
the middle, shrinking the interval by half.  

PBILI employs a similar mechanism as  PBILB in that it 
also starts from a most general model and gradually 
concentrates on a smaller part of the whole search space. 
However, it may be limited in that the movement of 
boundary is not reversible and the sampling is restricted 
within the interval. This means that if an incorrect or 
premature shrinking of interval happens, there is no 
chance for PBILI to correct it and the search space outside 
the current interval has zero probability of being sampled 
again. 
 
2.3 PBIL Based On Gaussian Distributions (PBILG) 
 
Another approach to continuous PBIL is somewhat 
different. It employs a model of a Gaussian distribution on 
the search space, which is the product of a set of 1D 
Gaussians for each variable[7]. It also starts with a rather 
general distribution with the mean vector of its Gaussian 
in the middle of the search space. In each generation, the 
mean vector X is updated by the combination of the best, 
the second best and the worst individuals (Eq.1). 
 
Xt+1 = (1-α) ·X t + α· (X best, 1+X best, 2-X worst)            (1) 
 

PBILG also introduces a new parameter σ, the standard 
deviation of the univariate Gaussian. Its value determines 
the diversity of the population. Generally speaking, a small 
value restricts individuals in a small area around the mean 
vector while a large area can be searched with a large σ. In 
both cases, every point in the search space has the chance 
to be sampled, with probability concentrated around the 
mean according to the value of σ. So, in theory, PBILG has 
the property of global optimization. In practice, the value 
of σ should not be too large because the population size is 
limited and using a large σ means distributing limited 
number of individuals in a large area. As a result, the 
information about the structure of the problem collected 
from these individuals can be inaccurate. As the value of σ 
increases, PBILG approaches random search behaviour. A 
strategy for dynamically adapting the value of σ based on 
the distribution of best individuals has also been 
proposed[7]. 

This algorithm is quite different from PBILB and PBILI 
described above. In fact, it works as a population-based 
hill-climbing algorithm coupled with Gaussian mutation.  
This is shown with the Stochastic Hill Climbing with 
Learning by Vectors of Normal Distributions 
(SHCLVND) algorithm[11]. 

 PBILG is very sensitive to its starting position, 
especially in multimodal situations because it always 
focuses on the neighbouring area. In fact, it can quickly 
move to a local optimum close to its starting position and 
get stuck there. Since it moves towards/away from the 
best/worst individuals in the population, no matter their 
fitness values and positions, the mean vector will not 
converge towards the local optimum; rather, it will 
oscillate around it. As mentioned above, in order to make 
the initial distribution general, PBILG is restricted to start 

from the middle of the search space. Surprisingly, two of 
the test functions (F1 and F2) used in [7] have the origin as 
their global optima (i.e., the search space is symmetric 
about the origin), which means that experiments conducted 
on these two test functions actually started with the model 
centred at the global optima! A comprehensive set of 
experiments investigating the performance of PBILG  only 
using Xbest,1 can be found in [12]. 

 Another problem arises from the way those individuals 
chosen to update the mean vector combine. In Eq.1, each 
individual has equal weight, making the same contribution 
to the updating. For the two best individuals, this may not 
be a problem but if we want to extend it to more samples, 
simply averaging them may be inappropriate. Instead, each 
individual’s fitness value could be explicitly considered.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A sample of searching on landscape 
 
A negative sample has also been used in the updating 

rule. Moving away from the worst sample may seem 
reasonable but this is not always the case. An example is 
shown in Figure 1 where the five arrows (from left to 
right) represent the mean vector, the second best 
individual, the best individual, the optimum and the worst 
individual. The optimum that PBILG is looking for is on 
the right of the current mean vector. In fact, the first and 
second best individuals found are also on the right, which 
will drag the mean vector towards the optimum. However, 
the worst individual is on the right of the mean vector too. 
According to Eq.1, the linear combination of these three 
individuals is very likely to be in the left of the mean 
vector, depending on the exact values of these individuals. 
If so, the mean vector will be updated to the left, which is 
not what is intended.  

Furthermore, there are some other problems with the 
linear combination in Eq.1. For example, if –Xworst is 
regarded as a new individual, the linear combination will 
be the summation of three individuals, which may exceed 
the search space and the mean vector may also be moved 
outside of the search space, especially with a large 
learning rate. So, it seems to be more reasonable to use the 
average value instead of the summation (i.e., -Xworst should 
also be limited within the search space if necessary to 
make the whole combination within the search space). 
Another issue is that Eq.1 is not even a correct 
implementation of using the negative sample. Consider a 
1D sample: if |Xt|>|Xworst|, the component –Xworst will 
actually try to modify Xt towards Xworst, the worst sample! 

        Xt    Xbest,2   Xbest,1 

  Xworst 

 Optimum 

 F 

 X 
 0 



2.4 Extensions to PBILG 
 
2.4.1 A New Updating Rule 

 
From the discussion above we can see that usually only a 
small fraction of the population is chosen to update the 
probability vector of PBILG while others are simply 
discarded. However, each individual in the population tells 
us something about the structure of the landscape. If we 
only utilize the best ones and the worst one, we will 
actually lose a lot of information contained in the 
population. In order to thoroughly exploit this information, 
a new updating rule can be formulated that takes into 
account all individuals. Below is a new mean vector 
updating rule of PBILG for maximization problems. 
 

∑
∑=

=

+ ⋅−⋅+=
N

i
N

i
i

it
i

tt

xf

xf
XxXX

1

1

1

)(

)(
)(α                 (2) 

 
In Eq. 2, the amount of modification of the mean vector 

is decided by the product of the learning rate and the sum 
of the difference between the mean vector and each 
individual, weighted by the ratio between the fitness value 
of that individual and the sum of the fitness values of all 
individuals. It can be also easily modified to deal with 
minimization problems and/or negative fitness values. 
Compared to the former updating rule, the new one takes 
into account all individuals and it does not explicitly 
distinguish between “good individuals” and “bad 
individuals”. The contribution of each individual is simply 
decided by its position and the fitness value. 
 
2.4.2 A Self-Adaptive Learning Rate 
 
Usually, a very small value is adopted for the learning rate 
of PBILG (e.g., 0.01). The major reason is to keep the 
algorithm reliable, resistant to some random sampling 
error. However, this reliability is gained at the cost of low 
convergence rate. Fortunately, under certain situation, it is 
possible to employ a large learning rate to accelerate the 
convergence while keeping the reliability.  
 
     
 
 
 
 
 
 
 
 
 
 

Figure 2: Learning rate vs. Landscape 
 

For example, Figure 2 shows a local area of a 
multimodal landscape. If the mean vector is at position A, 
good individuals are often located on both sides. In order 

to make sure (i.e., with high probability) that the mean 
vector will eventually move towards the better optimum 
(right), a very small learning rate is needed. In fact, PBILG 
will oscillate around position A for a while and 
stochastically drift right. As a contrast, when PBILG is at 
position B, far from the worse optimum and close to the 
better optimum, most good individuals will be on the right 
side and it can “confidently” move right.  

 
 
 
 
 
 
 
 
 
 

 
Table 2: A Strategy for Self-Adaptive Learning Rate 
 
The general idea in the above situation is to use a small 

learning rate in position A and use a large learning rate in 
position B. This strategy is implemented in Table 2. Here, 
we maintain a separate learning rate for each variable. The 
reason behind this strategy is that when the mean vector 
oscillates, it suggests that there may be multiple attractors 
in the neighbouring area. Hence, the algorithm should be 
cautious by using a small learning rate. When PBILG 
moves in the same direction within consecutive 
generations, it may imply that there is only one major 
attractor and it will be safe to gradually increase the 
learning rate to speed up the movement.  

For the value of the parameter q, which controls how 
fast we want to increase the learning rate, it can be a 
predefined constant such as 0.1 or 0.2 or could be decided 
dynamically by some heuristic. For example, maybe we 
might choose the value based on the distribution of good 
individuals. If the majority of good individuals are on the 
same side that PBILG will move towards, we can probably 
increase the value of q. For simplicity, in this paper, a 
predefined constant value of q is used. 
 
2.4.3 Limitations 
 
Although we have proposed some modifications that 
hopefully could improve the performance of PBILG, the 
algorithm has a seemingly more inherent shortcoming. 
What we have tried to do is to increase the reliability and 
the convergence speed of this algorithm but this does not 
change the fundamental mechanism. That is, even if 
PBILG can quickly, reliably converge to the better 
optimum instead of the worse optimum (see Figure 2), it 
may then get stuck there if the global optimum is far from 
that local optimum and there are no intermediate local 
optima that can be used as steps. 

The key to this problem resides in the Gaussian model 
it employs. Although all points can be sampled in theory, 
it focuses on a small area around its mean vector from the 
beginning of evolution. That is, PBILG has strong bias 
towards the search space.  

 F 

 X 
 0 

  A 

  B 

1. Initialize the learning rate α to a small value p 
2. If the direction of movement in current generation 

is the same as that in the last generation, increase 
the learning rate (up to 1.0): 
α (t+1) = α (t) · (1+q)      (q>0)      (Bonus) 
Otherwise reset its value to p: 
α (t+1) = p                                      (Penalty) 



3  PBIL Based On Histograms (PBILH) 
 

3.1 Why Histograms? 
 

In Section 2, we have reviewed PBILB and two extensions 
of PBILB in continuous spaces. PBILI has some similarity 
to PBILB in that they both start from a very general 
distribution and then gradually concentrate on a smaller 
area. However, the movement of boundary in PBILI is 
deterministic and points outside the interval are ignored 
permanently. In fact, there is another potential problem 
with this approach. Initially, each interval covers the 
whole space in each dimension and PBILI is simply doing 
random searching. Only when the algorithm is confident 
enough that the global optimum is in the upper half 
interval or the lower half interval, would the interval be 
reduced by half but how about if the algorithm is not 
“convinced” for a long time?  If so, PBILI will keep 
random searching within both upper and lower intervals. 
Here, the problem is that the boundary will be either 
unmoved or moved dramatically by half of the interval. In 
fact, the searching area should be reduced smoothly and it 
should always be possible for points outside the current 
focus to be sampled, even with very low probability. As 
discussed above, PBILG employs in contrast a local 
searching mechanism, a Gaussian model moving around 
the search space. This is quite different from the original 
idea of PBILB in that it has strong bias from the beginning 
to the end. It does not shrink its searching area but simply 
localizes the search in space.  

Can we suggest an alternative model for PBIL in 
continuous spaces? This model should be general enough 
to be capable of representing the whole search space 
without any initial bias for the sake of global optimization 
and it should also be able to concentrate the searching 
effort into a smaller area gradually.  

In this section, we propose to use histograms as the 
probabilistic model for PBIL in continuous spaces. The 
histogram approach is one of the most common models 
used for non-parametric density estimation in Machine 
Learning and Pattern Recognition [13] and has a number 
of advantages. For example, there are no parameters to 
learn and it can be created very efficiently because it only 
needs to check each point one by one. Furthermore, it is 
also extremely flexible because it makes no assumption 
about the distribution of the data points. One of its 
disadvantages is that in high-dimensional spaces, the 
number of bins needed to create a reasonable histogram 
can be huge, as can be the number of data points needed. 
Suppose we divide each dimension into B bins, then for a 
space of N-dimension, totally BN bins are required, which 
will make this model intractable for large N. However, 
since we are talking about PBIL in which no dependence 
is considered, we can maintain a histogram for each 
variable independently. So, the number of bins required is 
reduced dramatically to B•N. 

Histograms have already been used in model-based 
EAs[14, 15]. In previous work, only a few data points are 
selected and put into the corresponding bin and each 
histogram is simply a counter of frequency. As a result, the 

value of each bin is decided by the number of data points 
that fall into it. In order to utilize all individuals and also 
incorporate the fitness value of each of them, in our 
algorithm, some changes have been made. That is, the 
value of each bin represents the fitness value not the 
number. We use the fitness value to represent the 
estimation of the goodness of the range that this bin stands 
for in continuous spaces. Another thing is that it is likely 
that several points may belong to a single bin. If so, the 
value of this bin will not be incremented as in the case of 
being a counter but the highest fitness will be retained. 
 
3.2 Algorithm Framework 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Flow diagram of PBILH 

Initialize each bin in Hi to 1/Bi 

Definition 
 
Hi: i

th histogram 
Bi: the number of bins in ith histogram 
Ti: i

th temporary histogram 
α : learning rate 

Sample a population of individuals 
with each variable generated 
according to each corresponding Hi  

Calculate fitness values (non-negative) 

Pick up an individual and locate its bin in each Ti 

If its fitness value is greater than the current value 
of a bin, update the bin value by the fitness value 
Repeat until all individuals have been chosen 

Initialize each bin in Ti to 0 

Normalize Ti so that they represent 
probability distributions 

Update each Hi towards Ti 
 

Hi (t+1) = (1-α) ·Hi (t) + α· Ti 

Stop Y N 
End 



From the framework in Figure 3 we can see that initially 
each histogram is simply a uniform distribution, capable of 
generating all individuals with equal probability. In each 
generation, a population of individuals will be generated 
by sampling from those histograms. More specifically, for 
each variable in each individual, a bin in the corresponding 
histogram will be chosen in proportion to its value. The 
actual value assigned to each variable can be then chosen 
randomly within the range that the bin stands for.  After all 
individuals are generated and evaluated, an empty 
temporary histogram will be created for each variable. 
Next, all individuals will be chosen one by one to fill in 
them and the value of each bin will be set to the fitness 
value of the fittest individual that falls into this bin instead 
of the number of individuals belonging to it. After 
normalization, these temporary histograms will represent 
the probability distributions estimated from the current 
population. Finally, each original histogram will be 
updated towards each corresponding temporary histogram 
in the same incremental manner as in PBILB.  

In summary, a set of histograms will be evolved based 
on the fitness values of all individuals. In fact, the real-
valued element in the probability vector of PBILB is an 
extreme case of the histogram. If we apply histograms in 
binary spaces, each histogram will contain only two bins, 
representing 0 and 1 respectively and only one real-valued 
element is needed to describe each histogram due to the 
complementarity. Within each histogram, bins 
corresponding to optima will be expected to have higher 
values than others and the searching will gradually be 
biased towards areas represented by these bins. 
 
4 Experiments 
 
4.1 Objective 
 
We have discussed the updating rule, the learning rate and 
a new framework for PBIL in continuous spaces.  In this 
section, we tested our ideas through a set of experiments. 
Certainly, in order to draw any general conclusion, a large 
number of experiments on a wide range of test problems 
are needed to make sure the results are reliable. Here, 
however, we wanted to focus on some specific problems to 
obtain an intuitive understanding of our analysis. At the 
same time, we do not intend to claim that those approaches 
proposed are perfect and superior to others under all 
situations but we did want to point out some potential 
directions towards the improvement of PBIL. 
 
4.2 Methodology 
 
We conducted two experiments. The first experiment 
compared PBILG with the new Gaussian-based PBIL 
(PBILN) employing the new updating rule (Eq. 2) and the 
self-adaptive learning rate (Table 2). The purpose was to 
demonstrate that, facing with multiple attractors, PBILN is 
more likely to converge to the better one and/or within less 
time in terms of the number of function evaluations. For 
this purpose, we designed a 2D landscape with 2 peaks 
(Figure 4). Each peak is a weighted Gaussian probability 

density function. The fitness value of a point in the 
landscape is decided by the highest value returned from all 
density functions. Table 3 shows the parameters of the two 
optima (i.e., one density function is scaled down to 
represent the local optimum). We started PBILG and 
PBILN at the origin, which is also the middle position 
between the two optima (Figure 5). Instead of recording 
the best individual found in terms of fitness value, we 
examine the mean vector itself as the movement of the 
model of the landscape maintained by PBIL. The 
performance of each PBIL was evaluated by the frequency 
that the mean vector moved to a neighbouring area around 
the global optimum (over several trials) and how many 
generations were needed to achieve this.  

 
Figure 4: The landscape with two optima 

 
Figure 5: The contour of the landscape 

 
Peak Mean Variances Scalar Value 

Global (6,6) (4.0, 4.0) 1.0 0.039789 
Local (-6,-6) (4.0, 4.0) 0.8 0.031831 

 
Table 3: Parameters of the landscape 

 
In the second experiment, we compared PBILH with 

PBILG on the same landscape. The purpose was to 
demonstrate that PBILH is robust and has better global 
optimization ability on this problem (i.e., less likely to get 
stuck on the local optimum). Since PBILH does not 
employ a mean vector, we used the fitness value of the 
best individual found so far as the performance criterion.  



4.3 Experiment Results 
 
For the first experiment, we simply adopted some common 
parameter values (Table 4). The learning rate of PBILN 

was initially set to 0.01, the same as that of PBILG but 
could be increased during evolution until 1.0. The scalar q 
was set to 0.2, which means that each time we increased 
the learning rate by 20%. When the Euclidean distance 
between the mean vector and the global optimum was less 
than the predefined distance threshold, we would record it 
as a successful trial. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Parameters for the first experiment 
 

 Success Rate Number of Generations 
PBILG 85% 161 
PBILN 95% 122 

 
Table 5: PBILG vs. PBILN (over 200 trials) 

 
Table 5 summarizes the results over 200 trials. It is 

clear than PBILN achieved a higher success rate than 
PBILG and its mean vector could move to the global 
optimum within less time. In order to have deeper 
understanding of the strategy for self-adapting the learning 
rate, we tested two variations of PBILG: PBILG1 and 
PBILG2.  The first one employed the same self-adaptive 
learning rate as that in PBILN while the second one used a 
large learning rate: 0.05. From Table 6 we can see that a 
larger learning rate accelerated the convergence rate but at 
the cost of reliability (i.e., the success rate). Instead, a self-
adaptive learning rate could help PBILG have a good 
balance between these two goals.  

 
 Success Rate Number of Generations 

PBILG1 80% 32 
PBILG2 68% 31 
 

Table 6: PBILG1 vs. PBILG2 (over 200 trials) 
 

Having demonstrated the usefulness of the new 
updating rule and the self-adaptive learning rate, we 
compared PBILG and PBILH. For PBILH, there are three 
parameters: the population size, the learning rate and the 
number of bins in each histogram. In our experiments, the 
population size and the learning rate were the same as 
those in PBILG and each histogram was divided into 50 

bins. Again, each algorithm was run for 400 generations in 
each of the 200 trials. For PBILG, the initial position of its 
mean vector was randomly chosen in the whole search 
space. The best individuals found within 400 generations 
were recorded for comparison.  

 
Figure 6: Performance of PBILH 

 
Figure 7: Performance of PBILG 

 
The distribution of the fittest individuals for each 

algorithm is shown in Figures 6&7.  It is evident that 
PBILH was always successful at finding the global 
optimum as all best individuals found had fitness values 
extremely close to the global optimum (0.039789). As a 
contrast, PBILG could only find the global optimum in 
around half of the runs. In fact, in other runs, it got stuck 
in the local optimum (0.031831). The explanation is that 
there were two optima and which optimum PBILG finally 
found was highly dependent of the starting position. Since 
the two optima had similar basin sizes and the initial 
position was randomly generated, it is reasonable to see 
the bimodal distribution in Figure 7. 

Finally, we selected one particular trial of PBILH and 
illustrated how the probabilistic model evolved during 
evolution. Figure 8 shows the evolving process of one 
histogram (i.e., both two histograms had very similar 
evolving process because of the symmetry of the 
landscape). Initially, the probabilistic model was simply a 
uniform distribution. Gradually, the values of bins 
corresponding to optima increased and the values of other 
bins decreased accordingly.  

Population Size: 50 
Maximum Generation: 400 

Standard Deviation: 1.0 
Distance Threshold: 0.5 

 
For PBILG: 

Learning rate: 0.01 
 

For PBILN: 
Learning rate: [0.01, 1.0] 

Scalar q: 0.2 



 
Figure 8:  Evolution of histogram 

 
5 Conclusion 
 
This paper reviewed the fundamental mechanism and 
some basic ideas of PBIL including PBILB and two 
extensions of PBILB in continuous spaces. We pointed out 
some potential problems with the updating rule and the 
small learning rate used before. A new updating rule that 
takes into account all individuals and their fitness values 
was proposed. In order to find a better balance between 
reliability and convergence speed, we also introduced a 
strategy for self-adapting the learning rate during 
execution. Experiment results showed that both techniques 
could improve the performance of  PBILG. In order to 
overcome some disadvantages of previous approaches to 
continuous PBIL, a histogram probabilistic model was 
used. Our approach is quite different from previous work 
in that we used the fitness value instead of the number of 
points as a measure of the goodness of each bin. 
Experiment results showed that PBILH greatly 
outperformed PBILG in terms of global optimization 
ability. Furthermore, each peak in the histogram represents 
a promising area, which means that PBILH could search 
and maintain several optima at the same time. 

Certainly, the work reported here is far from a complete 
story. Much more work is needed to investigate how to 
design a better updating rule (e.g., best/worst individuals 
vs. whole population with fitness values) and a better 
strategy for self-adapting the learning rate. We intend to 
use this as a good starting point for future work. Lastly, 
the histogram method presented is only a preliminary 
framework and there is still much room for improvement. 
For example, the number of bins in each histogram may be 
self-adaptive during evolution and the possibility of using 
more complex histogram model to capture dependences 
among variables also needs further investigation.  

 
 

Acknowledgment 
 
This work was partially supported by the Australian 
Postgraduate Award granted to Bo Yuan.  

References 
 
[1] Fogel, D.B. "An Introduction to Simulated Evolutionary 

Optimization", IEEE Transactions on Neural Networks, 
5(1): pp. 3-14, 1994. 

[2] Pelikan, M., Goldberg, D.E., and Lobo, F. "A Survey of 
Optimization by Building and Using Probabilistic Models", 
Tech. Report No.99018, University of Illinois at Urbana-
Champaign, 1999. 

[3] Larranaga, P. and Lozano, J.A., Eds. Estimation of 
Distribution Algorithms: A New Tool for Evolutionary 
Computation, Kluwer Academic Publishers, 2001. 

[4] Baluja, S. and Caruana, R. "Removing the Genetics from 
the Standard Genetic Algorithm", Tech. Report CMU-CS-
95-141, Carnegie Mellon University, 1995. 

[5] Baluja, S. "Population-Based Incremental Learning: A 
Method for Integrating Genetic Search Based Function 
Optimization and Competitive Learning", Tech. Report 
CMU-CS-94-163, Carnegie Mellon University, 1994. 

[6] Servet, I., Trave-Massuyes, L., and Stern, D. "Telephone 
Network Traffic Overloading Diagnosis and Evolutionary 
Computation Techniques". In Artificial Evolution 97, J.-K. 
Hao, et al. Eds., France, Springer, pp. 137-144, 1997. 

[7] Sebag, M. and Ducoulombier, A. "Extending Population-
Based Incremental Learning to Continuous Search Spaces". 
In Parallel Problem Solving from Nature-PPSN V, A.E. 
Eiben, et al. Eds., Amsterdam, Springer, pp. 418-427, 1998. 

[8] Shapiro, J.L. "Scaling of Probability-based Optimization 
Algorithms", To Appear in Advances in Neural Information 
Processing Systems 15 (NIPS2002), 2003 

[9] Baluja, S. "An Empirical Comparison of Seven Iterative and 
Evolutionary Function Optimization Heuristics", Tech. 
Report CMU-CS-95-193, Carnegie Mellon University, 
1995. 

[10] Baluja, S. and Davies, S. "Using Optimal Dependency-
Trees for Combinatorial Optimization: Learning the 
Structure of the Search Space". In the Fourteenth 
International Conference on Machine Learning, D.H. Fisher 
Ed., pp. 30-38, 1997. 

[11] Rudlof, S. and Köppen, M. "Stochastic Hill Climbing with 
Learning by Vectors of Normal Distributions". In The First 
Online Workshop on Soft Computing (WSC1), Najoya, 
Japan, 1996. 

[12] Gallagher, M. "An Empirical Investigation of the User-
Parameters and Performance of Continuous PBIL 
Algorithms". In Neural Networks for Signal Processing X, 
B. Widrow, et al. Eds., IEEE, pp. 702-710, 2000. 

[13] Bishop, C.M. Neural Networks for Pattern Recognition, 
Oxford University Press, 1995. 

[14] Tsutsui, S., Pelikan, M., and Goldberg, D.E. "Evolutionary 
Algorithm Using Marginal Histogram Models in 
Continuous Domain", Tech. Report No. 2001019, 
University of Illinois at Urbana-Champaign, 2001. 

[15] Bosman, P.A.N. and Thierens, D. "An Algorithmic 
Framework For Density Estimation Based Evolutionary 
Algorithms", Tech. Report UU-CS-1999-46, Utrecht 
University, 1999. 

 


