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a b s t r a c t

This paper proposes a confidence set-based computational method of minimal detectable fault (MDF)
based on the confidence set-separation condition between the healthy and faulty residual sets for
discrete linear time-invariant systems. The state-estimation-error dynamics for the analysis of MDF
under hybrid random and bounded uncertainties is divided into two sub-dynamics. The first sub-
dynamics is only affected by the bounded uncertainties. Under the precondition of Schur stability, an
outer-approximation of minimal robust positively invariant set with any given precision is obtained.
While the second sub-dynamics is only affected by the random uncertainties following the Gaussian
distributions. It is proved that the behavior of the second sub-dynamics at steady stage also follows
a certain Gaussian distribution, which can be bounded by confidence zonotopes given a proper
confidence level. MDF for actuator and sensor faults can be obtained by solving a non-convex
optimization problem to minimize the magnitude of fault subjected to the residual set-separation
constraints, which is equivalent to compute a distance from the origin to hyperplane along a fixed
direction by exploiting the geometric property. At the end of this paper, a two-link manipulator model
and a vehicle model are used to verify the effectiveness of our proposed method.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Fault diagnosis plays an important role in the safety and
eliability of complex systems, which has attracted more and
ore attentions of researchers in the control field (Blanke et al.,
006; Patton, 1997; Zhang & Jiang, 2008). In the literature, robust
ault diagnosis methods are generally divided into two categories
ased on the way to handle system uncertainties: the stochastic
ethods and the deterministic methods. The former describes
ystem uncertainties by using stochastic distributions and the
robability theory (Zhang, 2018), while the latter describes sys-
em uncertainties by using set theory (Tan et al., 2020, 2019).

The minimum detectable fault (MDF) is a typical performance
ndex used to characterize the performance of the fault detection
FD) scheme, which also indicates the sensitivity of FD. There are

✩ The material in this paper was not presented at any conference. This
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also some reference literature addressing the study of MDF. Liu
et al. (2005) proposed an LMI approach to minimal sensitivity
analysis with application to FD based on a full characterization
of the H _ index. Li and Zhou (2009) analyzed the problem of
fault detectability from the view point of optimal filter gain
of FD. In Pourasghar et al. (2016), MDF was characterized by
means of residual sensitivity and invariant sets where both sys-
tem inputs and uncertainties are given as unknown and bounded.
Further, Kodakkadan et al. (2017) analyzed detectable sensor
faults using interval observers based on two distinct approaches:
invariant-sets and classical fault-sensitivity method. It is further
proved from this analysis that both approaches derive distinct
formulations for MDF magnitude, though qualitatively similar.
Recently, Tan, Olaru, Roman, Xu and Liang (2019) established a
framework to compute MDF by constructing the minimal robust
positively invariant (RPI) set of linear parameter varying system
based on a poly-quadratic Lyapunov function.

Although there have been some literature around the topic of
MDF, the above listed works only consider the system model af-
fected by single type of uncertainties (either random or bounded)
to guarantee the robustness of computational results. Or one
might consider only bounded uncertainties and capture the ran-
dom uncertainties within these bounds. In general, real systems
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ould be always affected by both random and bounded uncertain-
ies. Kofman et al. (2012) proposed the concepts of probabilistic
ltimate bounds and probabilistic invariant sets to extend the
otions of invariant sets and ultimate bounds to consider ‘‘con-
ainment in probability’’. Pizzi et al. (2019) further considered
stablishing a novel set-based fault tolerant control scheme for
inear systems under Gaussian disturbances. Kouvaritakis et al.
2010) addressed to solve the guarantee issue of feasibility at
nitial time for stochastic model predictive control. Although the
bove works does not consider the computation problem of MDF
irectly, they still motivate the authors to construct invariant-set
ramework for linear time-invariant (LTI) systems subjected to
ixed stochastic and bounded uncertainties. From the view point
f reality, it is necessary to consider the computation of MDF for
ystems subjected to hybrid random and bounded uncertainties
n order to better characterize the performance of the FD scheme.
hus, we focus on the analysis of MDF for LTI systems under
ybrid Gaussian and bounded uncertainties in this context. The
ain contributions of this paper are summarized as follows: I. A
omplete framework analyzing MDF for LTI systems under hybrid
aussian and bounded uncertainties is established based on the
eparation constraints of confidence residual sets in healthy and
aulty situations; II. Computing MDF is formulated as a non-
onvex optimization problem, which is proved to be equivalent
o compute a distance from the origin to hyperplane along a fixed
irection.

. Preliminaries

.1. Notations

For a matrix X ∈ Rn×n, XT , tr(X), rank(X), det(X) and vec(X)
denotes the transpose, trace, rank, determinant and vectorization
of X , respectively. In represent the identity matrix with appropri-
ate dimensions. diag(x) denotes a diagonal matrix whose diagonal
elements are composed of a vector x ∈ Rn. mat(x) denotes the
atrixing the vector x. X⊗Y represents the Kronecker product of
atrices X and Y . For the random variables x and y, E[x] denotes

he expectation of x. The (cross) covariance between x and y
s Cov(x, y) = E[(x − E[x])(y − E[y])T ] = E[xyT ] − E[x]E[y]T .
P(x ∈ D) is the probability that an outcome leads x to fall inside
the domain D. An n-dimensional stochastic vector x following
Gaussian probability distribution is denoted as x ∼ G(µ,Q ),
here µ ∈ Rn and Q ∈ Rn×n are the center µ ∈ Rn and
he covariance matrix Q ∈ Rn×n of the Gaussian distribution,
espectively. Denote the trace of the covariance matrix Q as C(Q ).
he confidence ellipsoid of x with significance level α ∈ (0, 1)
an be defined as Eα(µ,Q ) = {x|x ∈ Rn, (x − µ)TQ−1(x −

) ≤ χ2
n (1 − α)}, where χ2

n (1 − α) ∈ R is the value taken
or probability 1 − α by the quantile function of the chi-squared
istribution with n degrees of freedom. Given two n-dimensional
aussian distribution vectors x ∼ G(µx,Qx), y ∼ G(µy,Qy) and an

appropriate matrix P ∈ Rn×n, then x + y ∼ G(µx + µy,Qx + Qy),
x ∼ G(Pµx, PQxPT ). The Minkowski sum of two sets X and Y is
efined as X ⊕ Y = {x + y | x ∈ X, y ∈ Y }.

.2. Zonotopes

A zonotope Z is defined as Z = g ⊕ HBt , where g and H
are its center and generator matrix, respectively, Bt is an interval
ector composed of t unitary intervals [−1, 1]. Here a zonotope is
enoted as Z = ⟨g,H⟩ for simplicity. Given two zonotopes Z1 =

g1,H1⟩ and Z2 = ⟨g2,H2⟩, Z1 ⊕ Z2 = ⟨g1 + g2, [H1 H2]⟩. Given a
zonotope Z = ⟨g,H⟩ and a compatible matrix K , KZ = ⟨Kg, KH⟩.
Given X = ⟨g1, αH⟩ and Y = ⟨g2, βH⟩, where α, β ∈ R+, then
X ⊕ Y = ⟨g + g , (α + β)H⟩.
1 2

2

Definition 2.1. For a matrix H = [h1, . . . , hi, . . . , hn−1] ∈

Rn×(n−1), where hi denotes the ith column of H , then n-
dimensional cross-product of H is defined as nX(H) ≜[
det(H (1)), . . . , (−1)i+1det(H (i)), ..., (−1)n+1det(H (n))

]T , where
(i)

∈ R(n−1)×(n−1) denotes a matrix where the ith row of H is
emoved.

emma 2.1. The halfspace representation H (Z) =

x ∈ Rn
|A x ≤ B} of a zonotope Z = ⟨g,H⟩ ⊆ Rn with H =

h1, . . . , hm] ∈ Rn×m is

A =
[
A +

T
−A +

T ]T
, B =

[
B+

T
B−

T ]T
,

+

s =
nX(H⟨γ ,...,η⟩)T

∥nX(H⟨γ ,...,η⟩)∥2
, B+

s = A +

s g + ∆Bs,

B−

s = −A +

s g + ∆Bs, ∆Bs =

m∑
j=1

|A +

s hj|.

A +
s , B+

s and B−
s denote the sth rows of A +, B+ and B−, respec-

tively. The index s varies from 1 to
( m
n−1

)
and the indices γ , . . . , η

are obtained by picking n − 1 out of m elements. H⟨γ ,...,η⟩ denotes
atrix H where the columns indexed by γ , . . . , η are removed.

More details on matrix calculus, probability distributions, el-
ipsoids and zonotopes can be referred to Alamo et al. (2005),
lthoff (2010), Byod and Vandenberghe (2004), Combastel (2015)
nd Zhang (2016).

. System models

.1. Plant model

The discrete linear time-invariant system under the effect of
dditive actuator and sensor faults is modeled as the following
orm:

k+1 =Axk + Buk + Gfk + Ezwz,k + Egwg,k, (1a)

yk =Cxk + Psk + Fzvz,k + Fgvg,k, (1b)

where xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny denote the state, input and
output of system at time instant k. wz,k ∈ Rnwz and vz,k ∈ Rnvz

represent the set-bounded disturbance and measurement error,
respectively. wg,k ∈ Rnwg and vg,k ∈ Rnvg represent Gaussian
disturbance and measurement noise, respectively. All the uncer-
tainties are mutually independent. fk ∈ Rnf and sk ∈ Rns denote
the additive actuator and sensor fault vectors, respectively. A ∈

Rnx×nx , B ∈ Rnx×nu , Ez ∈ Rnx×nwz , Eg ∈ Rnx×nwg , C ∈ Rny×nx ,
Fz ∈ Rny×nvz , Fg ∈ Rny×nvg , G ∈ Rnx×nf and P ∈ Rny×ns are
constant matrices with appropriate dimensions. It is assumed that
the disturbance wz,k and the measurement error vz,k are bounded
by given zonotopes: wz,k ∈ Wz = ⟨wc

z ,Hw⟩, vz,k ∈ Vz = ⟨vc
z ,Hv⟩,

where wc
z , v

c
z ,Hw and Hv are given constant vectors and matrices.

Similarly, the stochastic disturbance wg,k and the measurement
noise vg,k are assumed to obey the following Gaussian distribu-
tions: wg,k ∼ G(wc

g ,Qw), vg,k ∼ G(vc
g ,Qv), where wc

g , v
c
g ,Qw and

Qv are given constant vectors and matrices.

3.2. Design of FD observer

In order to implement robust FD, we construct the following
Luenberger-structure observer:

x̂k+1 = Ax̂k + Buk + L(yk − ŷk), (2a)

ŷk = Cx̂k, (2b)

where x̂k and ŷk are the estimated state and output vectors of
nx×ny is the gain matrix of the
the system (1), respectively. L ∈ R
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esigned FD observer (2). In the healthy situation without any
ctuator or sensor fault (i.e., f = 0, g = 0), the state-estimation

error ek and the residual rk are defined as

ek = xk − x̂k, (3a)

rk = yk − ŷk, (3b)

espectively. Furthermore, by combining (1a) and (2a), the dy-
amics of the state-estimation error ek in the healthy situation
s obtained as

k+1 =(A − LC)ek + Ezwz,k + Egwg,k

− LFzvz,k − LFgvg,k. (4)

The corresponding residual rk is rewritten as

rk = Cek + Fzvz,k + Fgvg,k. (5)

For the convenience of analysis, we split the dynamics (4) of ek
into the following two sub-dynamics:

ez,k+1 =(A − LC)ez,k + Ezwz,k − LFzvz,k, (6a)

g,k+1 =(A − LC)eg,k + Egwg,k − LFgvg,k, (6b)

nd it follows ek = ez,k + eg,k. Furthermore, the residual rk in (5)
s rewritten as

rk = rz,k + rg,k, (7a)

rz,k = Cez,k + Fzvz,k, (7b)

g,k = Ceg,k + Fgvg,k. (7c)

. Dynamics analysis in healthy/faulty situations

.1. Dynamics analysis in healthy situation

As for (6a), if there exists gain matrix L ∈ Rnx×ny such that
− LC is a Schur matrix, then, there exist a family of RPI sets

or the dynamics (6a) (Blanchini, 1999). Based on the results
n Tan, Olaru, Roman, Xu and Liang (2019), we can obtain the
inimal RPI (mRPI) set Ez,∞ =

∑
∞

i=0(A − LC)i(EzWz ⊕ (−LFz)Vz)
nd its outer-approximation Ez with any given precision for the
ynamics (6a). For the convenience of analysis, with a little abuse
f notation, we will use the outer-approximation set to replace
he mRPI set in the subsequent context. Note that, in principle, Ez
an be chosen to approximate the mRPI set Ez,∞ with any given
recision in advance. Thus, the error and conservatism introduced
or FD by using Ez to replace Ez,∞ can be ignored. Furthermore,
or the residual rz,k in (7b), at the steady stage, it follows

z,∞ ∈ Rz = CEz ⊕ FzVz . (8)

ased on the above analysis, it is found that the residual set Rz
ould be computed off-line. For brevity, we denote Rz by ⟨rcz ,Hz⟩,
.e., Rz = ⟨rcz ,Hz⟩.

heorem 4.1. Under the Schur stability on A − LC, the state-
stimation error eg,∞ at steady stage follows the Gaussian distribu-
ion: eg,∞ ∼ G(β∞, Φ∞), and

β∞ = (I − A + LC)−1(Egwc
g − LFgvc

g ), (9a)

∞ = mat[(I − (A − LC) ⊗ (A − LC))−1

vec(EgQwET
g + LFgQvF T

g L
T )]. (9b)

Please see the Appendix for the proof. □
Based on Theorem 4.1, considering vg,k ∼ G(vc

g ,Qv), ∀k ∈ N+,
g,k in (7c) also follows the Gaussian distribution at steady stage
s

∼ G(Cβ + F vc , CΦ CT
+ F Q F T ). (10)
g,∞ ∞ g g ∞ g v g

3

urther, as k → ∞, we have from (7a) that

∞ = rz,∞ + rg,∞. (11)

.2. Dynamics analysis in faulty situation

In this subsection, we mainly consider single actuator-fault
ituation to compute the magnitude of MDF for each fault fi,
here fi is the ith component of fk corresponding to the ith
ctuator fault. In this case, the analysis is carried on the following
ctuator-fault dynamics:

k+1 =Axk + Buk + Gifi + Ezwz,k + Egwg,k, (12a)

yk =Cxk + Fzvz,k + Fgvg,k, (12b)

here Gi denotes the ith column of G. For simplicity, here we
ainly consider the case of fi > 0. The situation fi < 0 can
e handled similarly using an equivalent transformation Gifi =

Gi(−fi). By combining (12) and the observer (2), the state-
stimation-error dynamics affected by the ith actuator fault is
btained as
a,i
k+1 =(A − LC)ea,ik + Gifi + Ezwz,k + Egwg,k

− LFzvz,k − LFgvg,k, (13)

Similar to the dealing way in the healthy situation, the state-
estimation error ea,ik is also split into three parts ez,k, eg,k and ea,if ,k,
.e., ea,ik = ea,if ,k+ez,k+eg,k. The dynamics of ez,k and eg,k have been
derived in (6), while the dynamics of ea,if ,k is given as

ef ,k+1 = (A − LC)ea,if ,k + Gifi. (14)

Obviously, at steady stage, it follows

ea,if ,∞ = (I − A + LC)−1Gifi. (15)

Based on the dynamics (13), the residual ra,ik under the ith actu-
ator fault is obtained as

ra,ik =Cea,ik + Fzvz,k + Fgvg,k

=Cea,if ,k + rz,k + rg,k. (16)

By letting k → ∞, it follows

ra,i
∞

= C(I − A + LC)−1Gifi + rz,∞ + rg,∞. (17)

5. Computing MDF for actuators

Since the random vector rg,∞ in (10) follows the Gaussian
distribution such that the support of rg,∞ is unbounded. Thus,
the supports of the real residual vector r∞ and ra,i

∞
are also all

unbounded based on (11) and (17). In order to compute the
confidence set-based MDF, the following theorem first gives the
confidence zonotope for the random vector rg,∞.

Theorem 5.1 (Confidence Zonotope). For the random vector rg,∞

in (10), let α ∈ [0, 1] and the confidence zonotope Rg =

⟨µ,
√

χ2
n (1 − α)S−1Λ

1
2 ⟩, where µ = Cβ∞ + Fgvc

g . S and Λ sat-
isfy the orthogonal decomposition of the real symmetric matrix
CΦ∞CT

+ FgQvF T
g , i.e., CΦ∞CT

+ FgQvF T
g = STΛS. Λ

1
2 denotes

a diagonal matrix whose diagonal elements are the square root of
the diagonal elements of Λ. Then, P(rg,∞ ∈ Rg ) ≥ 1 − α.

Please see the Appendix for the proof. □

Remark 5.1. Without considering the calculation cost, it is possi-
ble to consider using an iterative algorithm to find a zonotope to
approximate the ellipsoid with higher accuracy (Chabane et al.,
2014; Gaßmann & Althoff, 2020). Although an analytical solution
is given in Theorem 5.1, the approximation precision of this
method is lower than that of the iterative algorithm.
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Based on Theorem 5.1, we can use the confidence zonotope
Rg of the random vector rg,∞ to construct the confidence residual
sets R and Ra,i for the residual vectors r∞ and ra,i

∞
, respectively.

Considering rz,∞ ∈ Rz , (11) and (17), we construct R and Ra,i as

R =Rz ⊕ Rg , (18a)

Ra,i
={C(I − A + LC)−1Gifi} ⊕ Rz ⊕ Rg . (18b)

Theorem 5.2. For the confidence residual sets R and Ra,i, it follows

P(r∞ ∈ R) ≥ 1 − α, (19a)

P(ra,i
∞

∈ Ra,i) ≥ 1 − α. (19b)

Please see the Appendix for the proof. □
The monitoring criterion for FD based on confidence residual

sets at steady stage needs to real-timely check whether rk ∈ R
holds or not. If rk ̸∈ R, it indicates that the system (1) is faulty
at time instant k. Otherwise, we still consider that the system (1)
operates in the healthy situation. Once actuator fault occurs in the
system (1), it is known that the residual signal rk will converge
towards the confidence residual set Ra,i. Therefore, as long as the
intersection of the healthy residual set R and the actuator-fault
residual set Ra,i is empty, i.e., R∩Ra,i

= ∅, it can be guaranteed the
occurred actuator fault will be detected at the steady stage with
the confidence level 1−α based on Theorem 5.2. Thus, in order to
compute the magnitude of MDF for actuators, we formulate the
following optimization problem:

min
fi>0

fi s.t. R ∩ Ra,i
= ∅. (20)

Remark 5.2. For (20), only the calculation of MDF in steady
stage is considered. Although calculating the magnitude of MDF in
transition stage is a difficult problem, one possible way is to use
the set-valued observer method to generate a varying residual set
online to compute the magnitude of MDF during the transition
state.

It is not easy to directly solve the optimization problem (20)
considering the non-convexity of the constraint R ∩ Ra,i

= ∅.
Solving the non-convex optimization problem (20) is equivalently
transformed into computing the distance from the origin to hy-
perplane along a fixed direction, which is detailedly illustrated in
the following theorem.

Theorem 5.3. The optimal solution f ∗

i for the optimization problem
(20) can be given as

f ∗

i ≜ min{f ti }, 1 ≤ t ≤
( m
ny−1

)
,

where

f ti = d+

t /|A +

t λ̄|, λ̄ = λ/∥λ∥2,

λ = C(I − A + LC)−1Gi,

A +

t =
nX(H̃⟨γ ,...,η⟩)T

∥nX(H̃⟨γ ,...,η⟩)∥2
, d+

t =

m∑
j=1

|A +

i h̃j|,

H̃ =
1

∥λ∥2

[
2Hz 2

√
χ2
n (1 − α)S−1Λ

1
2

]
∈ Rny×m.

he index t varies from 1 to
( m
ny−1

)
and the indices γ , . . . , η are

btained by picking ny−1 out of m elements. H̃⟨γ ,...,η⟩ denotes matrix
˜ where the columns indexed by γ , . . . , η are removed. h̃j is the jth
column of H̃.

Please see the Appendix for the proof. □
4

Remark 5.3. Based on the above analysis results, we can imple-
ment the calculation of MDF for actuators with a confidence level
of 1 − α. We would like to emphasize that the proposed method
is also applicable to the calculation of MDF for sensors, and the
whole mathematical derivation is similar to that of the actuator.
Given the limited space, the detailed proofs and derivations are
not listed here.

Remark 5.4. MDF is an important performance index of fault di-
agnosis and directly reflects the sensitivity of FD. From the design
viewpoint, if MDF does not meet the design requirements under
the Luenberger-observer framework, we may consider going back
and tune the observer gains to further reduce MDF amplitude and
thus increase FD sensitivity.

Remark 5.5. Note that, computing the magnitude of MDF for
dynamic systems is a large topic. The current work mainly con-
siders solving the MDF for time-invariant systems with additive
actuator/sensor faults subject to hybrid Gaussian and bounded
uncertainties. How to extend the current method to calculate
the magnitude of MDF for complex nonlinear systems is still a
problem worth in-depth study.

6. Illustrative examples

6.1. Case I: A two-link manipulator

In the first case, a two-link manipulator model used in Chen
and Lin (2004) is considered. We choose the operating point
[q̄1 ¯̇q1 q̄2 ¯̇q2]T = [0.5 0.1 0.5 0.1] and [τ̄1 τ̄2]

T
= [0.1 0.1]T

o linearize the original non-linear dynamics. Further, we take a
ampling period Td = 1 s and the related system parameters are
btained as

=

⎡⎢⎣ 1.000 1.000 0 0
1.465 1.210 −2.229 0.127

0 0 1.000 1.000
14.809 −0.631 2.983 0.706

⎤⎥⎦ ,

B =

[
0 0.362 0 −2.45
0 −0.838 0 8.08

]T

, C =

[
1 0 0 0
0 0 1 0

]
.

In this example, we consider four additive actuator faults
[f1 f2 f3 f4]T and two additive sensor faults [s1 s2]T , whose dis-
tribution matrices are respectively designed as

G =

⎡⎢⎣0.815 0.632 −1.958 −0.357
0.906 0.098 −0.965 −0.485
0.127 0.279 1.158 1.800
0.913 0.547 −0.971 −0.942

⎤⎥⎦ ,

P =

[
0.709 −0.276
0.755 −0.678

]
.

Furthermore, the bounding zonotopes of the process disturbances
wz,k and the measurement noises vz,k are designed as Wz = {w ∈

R4
|∥w∥∞ ≤ 0.01} and Vz = {v ∈ R2

|∥v∥∞ ≤ 0.01}, whose
distribution matrices Ez and Fz are respectively given as

Ez =

⎡⎢⎣0.422 0.656 0.679 0.656
0.916 0.036 0.758 0.171
0.792 0.849 0.743 0.706
0.960 0.934 0.392 0.032

⎤⎥⎦ , Fz =

[
0.655 0.119
0.163 0.498

]
.

The random vectors wg,k and vg,k follow the Gaussian distribu-
tions, and the related parameters are given as wc

g = [0 0 0 0]T ,
vc
g = [0 0]T ,Qw = 0.01I4,Qv = 0.01I2. In addition, the coefficient

matrices Eg and Fg are set as

Eg =

⎡⎢⎣0.277 0.695 0.439 0.187
0.046 0.317 0.382 0.490
0.097 0.950 0.766 0.446

⎤⎥⎦ , Fg =

[
0.960 0.585
0.340 0.224

]
.

0.824 0.034 0.795 0.646
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Table 1
MDF for actuator and sensor faults.
Fault type Value of MDF

Actuator fault f1 0.4592
Actuator fault f2 1.6880
Actuator fault f3 0.4178
Actuator fault f4 0.6558
Sensor fault s1 0.1306
Sensor fault s2 0.4230

Fig. 1. Computation of MDF for actuator faults. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 2. Computation of MDF for sensor faults.

he gain matrix L of the observer (2) is given as

L =

[
0.900 1.465 0 14.81

0 −2.29 0.9 2.98

]T

.

he magnitudes of MDF for actuator and sensor faults are listed in
able 1. Regarding the computation of MDF for actuator faults, it
s shown in Fig. 1. We take Fig. 1(a) as an example to illustrate the
omputation of MDF for the first actuator fault f1. Based on the
ptimization problem (A.17), we need to find a minimal f ∗

1 (f
∗

1 >

) such that λ̄f ∗

1 ̸∈ ⟨0, H̃⟩. In this case, f ∗

1 indicates the MDF for
he first actuator fault f1. In Fig. 1(a), the red region denotes the
et ⟨0, H̃⟩. The green arrow line represents the direction of the
nit vector λ̄. From a geometric point of view, f ∗

1 denotes the
istance from the origin 0 to the boundary of ⟨0, H̃⟩ along the
irection vector λ̄. Similar analysis is finished for the computation
f MDF for the actuator faults f2, f3 and f4 in Fig. 1(b), (c) and
d), respectively. Fig. 2 shows the computation of MDF for sensor
aults s1 and s2 from the geometric point of view, which can be
lso analyzed similar to the actuator-fault case.
5

Fig. 3. Separation of residual sets and FD for actuator faults. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Separation of residual sets and FD for sensor faults.

Fig. 3 shows the results on the separation of residual sets
and FD for actuator faults. We take Fig. 3(a) as an example to
illustrate the result of FD based on the separation of residual sets
for the first actuator fault f1. In Fig. 3(a), the red region denotes
the healthy residual set R, while the blue region represents the
actuator-fault residual set Ra,1 corresponding to the MDF f ∗

1 . It is
shown that if the magnitude of occurred fault is equal to MDF f ∗

1 ,
the residual set R and the actuator-fault residual set Ra,1 are just
ight separated from each other. The green arrow line between
he centers of two residual sets represents the direction vector
f ∗

1 . We set the fault scenario as follows. From time instant k = 1
to k = 10, the system operates in healthy situation. While after
k = 10, we inject the additive actuator fault f ∗

1 to the dynamics
plant. It is shown that the residual signal rk will leave the healthy
residual set R and finally enter into the faulty residual set Ra,1.
hus, FD is finished as long as the residual signal rk goes out of the
ealthy residual set R. Similar analysis can be also implemented

for the residual set-separation based robust FD of the actuator
faults f ∗

2 , f
∗

3 and f ∗

4 . Fig. 4 shows the results on the separation of
residual sets and robust FD for sensor faults s∗1 and s∗2, which can
be also analyzed similar to the actuator-fault case.

6.2. Case II: A vehicle model

The second case study considers a linear vehicle model taken
from Varrier et al. (2014) with fixed velocity to verify the ef-
fectiveness of the proposed MDF method. The related system
matrices are given as

A =

[
0.7152 0.0220

]
, B =

[
0.1175

]
, C =

[
1 0

]
,
0.2362 1.3891 0.3326 0 1
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Fig. 5. Computation of MDF for actuator/sensor faults.

Ez =

[
0.6324 0.2785
0.0975 0.5469

]
, Eg =

[
0.9575 0.1576
0.9649 0.9706

]
,

z =

[
0.4218 0.7922
0.9157 0.9595

]
, Fg =

[
0.6557 0.8491
0.0357 0.9340

]
.

he distribution matrices for actuator fault fk and sensor fault sk
re given as

=

[
0.8147 0.1270
0.9058 0.9134

]
, P =

[
0.9572 0.8003
0.4854 0.1419

]
.

urthermore, the bounding zonotopes of wz,k and vz,k are de-
igned as Wz = {w ∈ R4

|∥w∥∞ ≤ 0.01} and Vz = {v ∈
2
|∥v∥∞ ≤ 0.01}. The random vectors wg,k and vg,k follow the

aussian distributions, and the related parameters are given by
c
g = [0, 0]T , vc

g = [0, 0]T , Qw = 0.001I2, Qv = 0.001I2. The gain
atrix L is

=

[
0.2152 0.0220
0.2362 0.8891

]
.

ig. 5 shows the computation results of MDF for actuator and
ensor faults of the vehicle model based on λ̄f ∗

i ̸∈ ⟨0, H̃⟩ or
¯ s∗i ̸∈ ⟨0, H̃⟩(i = 1, 2). Fig. 6 shows the results on residual set-
eparation based FD for actuator and sensor faults of the vehicle
odel. It is shown that the healthy residual set and the faulty

esidual set are just separated from each other when taking the
DF f ∗

i and s∗i (i = 1, 2). The real residual signal rk finally enters
nto the faulty residual set (the blue region) from the healthy
esidual set (the red region).

Finally, we make an in-depth comparative simulation between
he current proposed method and the existed computational
ethod of MDF dealing with the single bounded uncertainties

n Tan, Olaru, Roman and Xu (2019). We set that the vehicle
odel operates in the healthy situation from the time instant
= 1 to time instant k = 10. After time instant k = 10, we

nject the fault signals fk or sk into the system. Fig. 7 shows the
esults of fault detection and isolation (FDI) for the two actuator
aults and two sensor faults. Fig. 8 further lists the values of MDF
nd the fault diagnosis time for the methods proposed in the
ontext and Tan, Olaru, Roman and Xu (2019). It can be found
hat the current method has an advantage compared with the
ethod in Tan, Olaru, Roman and Xu (2019) on the value of MDF
nd the diagnosis time. There are smaller values of MDF f ∗ and
i c

6

Fig. 6. Set-separation based FD for actuators/sensors. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 7. Comparative results on FDI of actuators/sensors using the methods in
the context and Tan, Olaru, Roman and Xu (2019).

s∗i (i = 1, 2) for the current method, which indicates a higher
ensitivity of FD. The current method also has a shorter time delay
or FD and fault isolation (FI).

. Conclusions

This paper characterizes MDF for perturbed discrete-time LTI
ystems affected by additive faults using hybrid stochastic and
eterministic approach. By considering the separation constraint
f confidence residual sets in healthy and faulty situations, the
omputation of MDF is formulated a non-convex optimization
roblem. By exploiting the geometric property, the non-convex
ptimization problem is mathematically equivalent to compute
he distance from the origin and the hyperplane of zonotope
long the fixed direction, which can dramatically reduce the
omputational complexity.
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Appendix. Proofs of Lemmas, Propositions and Theorems

A.1. Proof of Theorem 4.1

Proof. By iterating the dynamics of the state-estimation error
vector eg,k from 0 to k, we can obtain

eg,k = (A − LC)keg,0 + αk, (A.1)

here αk =
∑k−1

i=0 (A − LC)iγk−1−i and γk−1−i = Egwg,k−1−i −

Fgvg,k−1−i. Since wg,k ∼ G(wc
g ,Qw), vg,k ∼ G(vc

g ,Qv), ∀k ∈ N+,
t follows

k−1−i ∼ G(Egwc
g − LFgvc

g , EgQwET
g + LFgQvF T

g L
T ).

onsidering αk =
∑k−1

i=0 (A − LC)iγk−1−i, it follows

αk ∼ G(βk, Φk), (A.2)

where

βk =

k−1∑
i=0

(A − LC)i(Egwc
g − LFgvc

g ), (A.3a)

Φk =

k−1∑
i=0

(A − LC)i(EgQwET
g + LFgQvF T

g L
T )

(A − LC)i
T
, (A.3b)

Firstly, let us compute β∞. By multiplying both sides of Eq. (A.3a)
by A − LC , it follows

(A − LC)βk =

k∑
i=1

(A − LC)i(Egwc
g − LFgvc

g ). (A.4)

y subtracting (A.4) from (A.3a), we have

I − A + LC)βk = (Egwc
g − LFgvc

g ) − (A − LC)k

× (Egwc
g − LFgvc

g ). (A.5)

onsidering A − LC is a Schur matrix, we can obtain that as
→ ∞, (A − LC)k → 0. Thus, it follows (9a) based on (A.5).
7

Next, let us compute Φ∞. Similarly, by left multiplying A− LC
nd right multiplying (A − LC)T for both sides of Eq. (A.3b), it
ollows

A − LC)Φk(A − LC)T =

k∑
i=1

(A − LC)i(EgQwET
g

+ LFgQvF T
g L

T )(A − LC)i
T
. (A.6)

y subtracting (A.6) from (A.3b), it follows

k − (A − LC)Φk(A − LC)T

= (EgQwET
g + LFgQvF T

g L
T ) − (A − LC)k(EgQwET

g

+ LFgQvF T
g L

T )(A − LC)k
T
. (A.7)

onsidering the Schur stability of A − LC , by letting k → ∞, we
ave

∞ − (A − LC)Φ∞(A − LC)T

= EgQwET
g + LFgQvF T

g L
T . (A.8)

onsidering the vectorization of (A.8), it follows

I − (A − LC) ⊗ (A − LC))vec(Φ∞)

= vec(EgQwET
g + LFgQvF T

g L
T ). (A.9)

urther, by matrixing (A.9), it follows (9b).

.2. Proof of Theorem 5.1

roof. Based on (10), it follows rg,∞ ∼ G(µ,Q), where µ =

β∞ + Fgvc
g and Q = CΦ∞CT

+ FgQvF T
g . By letting α ∈ [0, 1],

ased on Section 2.1, we obtain the confidence ellipsoid for the
andom vector rg,∞ as

α(µ,Q) ≜

r|r ∈ Rny , (r − µ)TQ−1(r − µ) ≤ χ2
ny (1 − α)}. (A.10)

ince Q is a real symmetric matrix, there always exists an orthog-
nal transformation

= STΛS, (A.11)

here S is an orthogonal matrix and Λ is a diagonal matrix. By
ubstituting (A.11) into (A.10), it follows

α(µ,Q) =

r|r ∈ Rny ,
(r − µ)T STΛ−1S(r − µ)

χ2
ny (1 − α)

≤ 1}. (A.12)

et us consider the linear mapping

=
1√

χ2
ny (1 − α)

Λ−
1
2 S(r − µ). (A.13)

hen the confidence ellipsoid (A.12) is transformed into a unit
all as
ny
2 (1) = {φ ∈ Rny |φTφ ≤ 1}. (A.14)

or the ball Any
2 (1), there always exist an outer-approximation

nit box ⟨0, I⟩ such that Any
2 (1) ⊆ ⟨0, I⟩. Further, based on the

linear mapping (A.13), we consider the linear inverse mapping

r =

√
χ2
ny (1 − α)S−1Λ

1
2 φ + µ. (A.15)

Based on the linear inverse mapping (A.15), the unit box ⟨0, I⟩ is
transformed into the zonotope

Rg = ⟨µ,

√
χ2
n (1 − α)S−1Λ

1
2 ⟩. (A.16)

Obviously, the zonotope Rg should contain the confidence ellip-
soid Eα(µ,Q), i.e., Eα(µ,Q) ⊆ Rg . Thus, we have P(rg,∞ ∈ Rg ) ≥

P(r ∈ E (µ,Q)) = 1 − α.
g,∞ α
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.3. Proof of Theorem 5.2

roof. First prove (19a). Based on (8), we have P(rz,∞ ∈ Rz) = 1.
Considering r∞ = rz,∞ + rg,∞, it follows

P(r∞ ∈ R) = P((rz,∞ + rg,∞) ∈ R)
= P((rz,∞ + rg,∞) ∈ Rz ⊕ Rg )
≥ P(rz,∞ ∈ Rz)P(rg,∞ ∈ Rg )
= P(rg,∞ ∈ Rg ) ≥ 1 − α.

ext prove (19b). Similarly, considering ra,i
∞

= C(I−A+LC)−1Gifi+
z,∞ + rg,∞, it follows

(ra,i
∞

∈ Ra,i)

= P((C(I − A + LC)−1Gifi + rz,∞ + rg,∞) ∈ Ra,i)

= P((C(I − A + LC)−1Gifi + rz,∞ + rg,∞)

∈ {C(I − A + LC)−1Gifi} ⊕ Rz ⊕ Rg )

≥ P(C(I − A + LC)−1Gifi ∈ {C(I − A + LC)−1Gifi})
P(rz,∞ ∈ Rz)P(rg,∞ ∈ Rg )

= P(rg,∞ ∈ Rg ) ≥ 1 − α.

A.4. Proof of Theorem 5.3

Proof. Let us first consider the constraint R ∩ Ra,i
= ∅. Let

λ = C(I − A + LC)−1Gi, then

R ∩ Ra,i
= ∅

⇐⇒ (Rz ⊕ Rg ) ∩ ({λfi} ⊕ Rz ⊕ Rg ) = ∅

⇐⇒ 0 ̸∈ Rz ⊕ Rg ⊕ {−λfi} ⊕ (−Rz) ⊕ (−Rg )
⇐⇒ λfi ̸∈ Rz ⊕ Rg ⊕ (−Rz) ⊕ (−Rg )

⇐⇒ λfi ̸∈ ⟨rcz ,Hz⟩ ⊕ ⟨µ,

√
χ2
n (1 − α)S−1Λ

1
2 ⟩

⊕ ⟨−rcz ,Hz⟩ ⊕ ⟨−µ,

√
χ2
n (1 − α)S−1Λ

1
2 ⟩

⇐⇒ λfi ̸∈ ⟨0, 2Hz⟩ ⊕ ⟨0, 2
√

χ2
n (1 − α)S−1Λ

1
2 ⟩

⇐⇒ λ̄fi ̸∈ ⟨0, H̃⟩,

here the unit vector λ̄ =
λ

∥λ∥2
and H̃ =

1
∥λ∥2

[2Hz 2
√

χ2
n (1 − α)S−1Λ

1
2

]
∈ Rny×m. Then, the optimization

roblem is changed to

in
fi>0

fi s.t. λ̄fi ̸∈ ⟨0, H̃⟩. (A.17)

egarding the optimization problem (A.17), it has an obvious
eometrical significance as shown in Fig. A.1. We take the two-
imensional situation as a case. In Fig. A.1, λ̄fi denotes a line
assing through the origin O with the unit direction vector λ̄,
hile ⟨0, H̃⟩ represents the zonotope centered on the origin O.
s fi increases from 0 to infinity, λ̄fi will also move from the
rigin O to the infinity along the direction λ̄. During the above
rocess, since ⟨0, H̃⟩ is a closed zonotope contained on the origin
, there always exists an intersection (the red point in Fig. A.1)
etween the line λ̄fi and the zonotope ⟨0, H̃⟩. This point indi-
ates the optimal solution f ∗

i for the optimization problem (A.17).
herefore, solving the optimization problem (A.17) is equivalently
ransformed into searching the intersection point between the
ector λ̄fi and the zonotope ⟨0, H̃⟩.
Based on Lemma 2.1, we have the half-space representation
(⟨0, H̃⟩) = {r ∈ Rny |A r ≤ d} of ⟨0, H̃⟩ as

=

[
A +

+

]
, d =

[
d+

+

]
, (A.18)
−A d

8

Fig. A.1. Geometrical illustration on the problem (A.17).

where

A +

t =
nX(H̃⟨γ ,...,η⟩)T

∥nX(H̃⟨γ ,...,η⟩)∥2
, d+

t =

m∑
j=1

|A +

i h̃j|.

A +

t denotes the tth row of A +, d+

t denotes the tth element of d+

and h̃j denotes the jth column of H̃ . The index t varies from 1 to
m

ny−1
)
and the indices γ , . . . , η are obtained by picking ny − 1

ut of m elements. H̃⟨γ ,...,η⟩ denotes matrix H̃ where the columns
ndexed by γ , . . . , η are removed.

Since the symmetry of H (⟨0, H̃⟩) regarding the origin O, we
nly need to consider the intersection point between the line

¯ fi and the half zonotope H +(⟨0, H̃⟩) = {r ∈ Rny |A +r ≤ d+
}.

or each hyperplane {r ∈ Rny |A +

t r = d+

t }, considering that the
oint λ̄f ti is in the hyperplane {r ∈ Rny |A +

t r = d+

t }, it follows
+

t λ̄f ti = d+

t . Further, we only consider the case of f ti > 0 and
t can be obtained that f ti =

d+
t

|A +
t λ̄|

. Therefore, the optimal f ∗

i

could be obtained by choosing the minimal value among the set
{f ti }, 1 ≤ t ≤

( m
ny−1

)
.
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