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Abstract

Multi-camera depth estimation has recently garnered signif-
icant attention due to its substantial practical implications in
the realm of autonomous driving. In this paper, we delve into
the task of self-supervised multi-camera depth estimation and
propose an innovative framework, STViT, featuring several
noteworthy enhancements: 1) we propose a Spatial-Temporal
Transformer to comprehensively exploit both local connectiv-
ity and the global context of image features, meanwhile learn-
ing enriched spatial-temporal cross-view correlations to re-
cover 3D geometry. 2) to alleviate the severe effect of adverse
conditions, e.g., rainy weather and nighttime driving, we in-
troduce a GAN-based Adversarial Geometry Regularization
Module (AGR) to further constrain the depth estimation with
unpaired normal-condition depth maps and prevent the model
from being incorrectly trained. Experiments on challenging
autonomous driving datasets Nuscenes and DDAD show that
our method achieves state-of-the-art performance.

Introduction
In the realm of self-supervised depth estimation, tech-
niques leveraging photometric consistency across consecu-
tive frames have achieved considerable success. Recently,
the self-supervised depth estimation paradigm has been ex-
tended to multi-camera settings, due to the need for au-
tonomous driving. However, this extension is not trivial
and poses unique challenges. Self-supervised methods rely
heavily on co-visible regions among frames to recover 3D
geometry and compute reprojection errors. However, in
large-scale autonomous driving datasets like NuScenes and
DDAD, challenges arise from very small overlaps between
adjacent cameras and diverse weather and illumination con-
ditions. To address these challenges, we propose a Spatial-
Temporal Transformer that comprehensively exploits both
local and global context features of images while leveraging
cross-camera and cross-frame geometric correlations using
cross-attention layers. This approach maximizes the utiliza-
tion of co-visible regions, improving feature matching and
network training. To handle challenging scenarios like rainy
and night conditions, we introduce a Generative Adversarial
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Figure 1: Overview of our STViT framework.

Network-based geometry regularization module to regular-
ize the prediction weirdness and mitigate the side effects.

Method
Proposed Framework. Our STViT is composed of a Depth
Network, a Pose Network, and an Adversarial Geometry
Regularization (AGR) module. The Depth Network consists
of a Spatial-Temporal Transformer Encoder and a Depth De-
coder. The Pose Network is implemented by a lightweight
ResNet. The Depth Network and Pose Network are jointly
optimized via the minimization of Spatial-Temporal Photo-
metric Loss. After predicted depth maps are obtained, they
are further regularized and refined in the AGR module.

Spatial-Temporal Transformer. We propose enhance-
ments to the encoder architecture and build a Spatial-
Temporal Transformer. It not only leverages the Trans-
former’s ability to model long-range dependencies, over-
coming the locality issue in feature extraction seen in previ-
ous works (Godard and et al 2019; Wei and et al 2023), but
also introduces Spatial-Temporal Cross-Correlation to fully
exploit the co-visibility regions across cameras and tempo-
ral frames for geometric structure recovery. Taking inspira-
tion from a recent Transformer model (Lee and et al 2022),
we construct our Depth Encoder by introducing a Multi-
Path Transformer Block to capture both local and global
context within images simultaneously. As shown in Fig-
ure 2, It consists of a Conv-Stem and L Spatial-Temporal
Transformer Layers. Each Transformer layer contains Multi-
Scale Patch Embedding, Transformer Blocks, Convolutional
Block, Global-to-Local Feature Interaction, and Spatial-
Temporal Cross Correlation Module.

Spatial-Temporal Cross Correlation (STCC). Al-
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Methods ResolutionAbs Rel ↓Sq Rel ↓RMSE ↓RMSE log ↓ResolutionAbs Rel ↓Sq Rel ↓RMSE ↓RMSE log ↓
Monodepth2 (Godard and et al 2019)352× 640 0.287 3.349 7.184 0.345 384× 640 0.217 3.641 12.962 0.323

FSM* (Guizilini and et al 2022) 352× 640 0.334 2.845 7.786 0.406 384× 640 0.200 3.392 12.270 0.301
SurroundDepth (Wei and et al 2023) 352× 640 0.245 3.067 6.835 0.321 384× 640 0.200 3.392 12.270 0.301

EGA-Depth (Shi and et al 2023) 352× 640 0.239 2.357 6.801 0.936 384× 640 0.195 3.211 12.117 0.297
Ours 352× 640 0.233 2.815 6.681 0.312 384× 640 0.192 2.965 12.156 0.293

Table 1: Quantitative evaluation of self-supervised multi-camera depth estimation on nuScenes (left part) and DDAD (right
part). FSM* denotes reproduced results. The best results are highlighted in bold and the second-best ones are underlined.
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Figure 2: The architecture of Depth Encoder.

though we can effectively acquire the image feature, the
cross-view correlation among different cameras and differ-
ent temporal frames is still not exploited. Thus, we intro-
duce an STCC Module to facilitate correlation learning and
geometry recovery. As shown in Figure 2, the interacted
features are first split into different cameras and different
temporal frames. For each feature, we pre-define the list of
views that share overlapping regions. The overlapped views
contain adjacent cameras at the same timestamp, adjacent
temporal frames of the same camera, and simultaneously
cross-camera and cross-frame views as well (e.g., the front
image at timestamps t and the left-front image at t + 1).
Thus, STCC can learn enriched spatial-temporal cross-view
correlations for accurately inferring 3D geometry.

Adversarial Geometry Regularization. In real-world
outdoor driving scenes, adverse conditions such as rainy
weather and nighttime driving are frequently encountered,
which significantly affects network learning and estimation
performance. Thus, we propose a GAN-based Adversarial
Geometry Regularization (AGR) module to further constrain
the depth estimation, as shown in Figure 1. Specifically, we
consider the Depth Network as a generator to provide depth
map predictions. And adopt the depth predictions of an ar-
bitrary normal-condition frame as a reference to regularize
the depth distribution. It is observed the depth value distri-
bution has a close relationship with the pixel positions in
prior research. Thus, we use the positional query to scan
over the depth map which serves as key and value. So that
we can obtain the positional embedding e by calculating the
dot product similarity between the query and keys. After
that, the positional embedding is concatenated with the nor-
malized predicted depth maps, denoted as [e, µ(D)]. Sim-
ilarly, the arbitrary depth maps DR are also concatenated

with the corresponding positional embedding as the regular-
ization [eR, µ(DR)]. A discriminator is used to distinguish
[e, µ(D)] and [eR, µ(DR)], while the depth network tries to
make predictions indistinguishable with regularization ref-
erences. The optimization item LAGR is the GAN loss.

Self-supervised Training Loss. The final training loss
consists of the typical photometric loss ℓp and smoothing
loss ℓsm from self-supervised monocular methods (Godard
and et al 2019) and addtional AGR regularization loss ℓAGR:

Loss = ℓp + 10−3ℓsm + 5× 10−4ℓAGR (1)

Results and Conclusion
The evaluation metrics for multi-camera depth estimation
are the same as its monocular counterpart. Four error met-
rics: Abs Rel for Absolute Relative Error, Sq Rel for
Square Relative Error, RMSE for Root Mean Square Error,
RMSE log for Root Mean Square Logarithmic Error and
three accuracy metrics are included. We evaluate STViT us-
ing large-scale benchmarks Nuscene and DDAD, as shown
in Table 1. Compared with existing methods, our method
achieves state-of-the-art performance. Overall, we introduce
a new self-supervised multi-camera depth estimation frame-
work in this paper, with the proposed Spatial-Temporal
Transformer to comprehensively exploit image features and
spatial-temporal cross-view correlation and a GAN-based
Adversarial Geometry Regularization to regularize the side
effects of adverse conditions for training.
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